3.25.32 \(\int \frac {(1-2 x)^{5/2}}{(2+3 x)^4 \sqrt {3+5 x}} \, dx\) [2432]

Optimal. Leaf size=122 \[ \frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{3 (2+3 x)^3}+\frac {55 (1-2 x)^{3/2} \sqrt {3+5 x}}{12 (2+3 x)^2}+\frac {605 \sqrt {1-2 x} \sqrt {3+5 x}}{8 (2+3 x)}-\frac {6655 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{8 \sqrt {7}} \]

[Out]

-6655/56*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^(1/2)+1/3*(1-2*x)^(5/2)*(3+5*x)^(1/2)/(2+3*x)^3+55/
12*(1-2*x)^(3/2)*(3+5*x)^(1/2)/(2+3*x)^2+605/8*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {96, 95, 210} \begin {gather*} -\frac {6655 \text {ArcTan}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{8 \sqrt {7}}+\frac {\sqrt {5 x+3} (1-2 x)^{5/2}}{3 (3 x+2)^3}+\frac {55 \sqrt {5 x+3} (1-2 x)^{3/2}}{12 (3 x+2)^2}+\frac {605 \sqrt {5 x+3} \sqrt {1-2 x}}{8 (3 x+2)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(5/2)/((2 + 3*x)^4*Sqrt[3 + 5*x]),x]

[Out]

((1 - 2*x)^(5/2)*Sqrt[3 + 5*x])/(3*(2 + 3*x)^3) + (55*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/(12*(2 + 3*x)^2) + (605*S
qrt[1 - 2*x]*Sqrt[3 + 5*x])/(8*(2 + 3*x)) - (6655*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(8*Sqrt[7])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(1-2 x)^{5/2}}{(2+3 x)^4 \sqrt {3+5 x}} \, dx &=\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{3 (2+3 x)^3}+\frac {55}{6} \int \frac {(1-2 x)^{3/2}}{(2+3 x)^3 \sqrt {3+5 x}} \, dx\\ &=\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{3 (2+3 x)^3}+\frac {55 (1-2 x)^{3/2} \sqrt {3+5 x}}{12 (2+3 x)^2}+\frac {605}{8} \int \frac {\sqrt {1-2 x}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx\\ &=\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{3 (2+3 x)^3}+\frac {55 (1-2 x)^{3/2} \sqrt {3+5 x}}{12 (2+3 x)^2}+\frac {605 \sqrt {1-2 x} \sqrt {3+5 x}}{8 (2+3 x)}+\frac {6655}{16} \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx\\ &=\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{3 (2+3 x)^3}+\frac {55 (1-2 x)^{3/2} \sqrt {3+5 x}}{12 (2+3 x)^2}+\frac {605 \sqrt {1-2 x} \sqrt {3+5 x}}{8 (2+3 x)}+\frac {6655}{8} \text {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )\\ &=\frac {(1-2 x)^{5/2} \sqrt {3+5 x}}{3 (2+3 x)^3}+\frac {55 (1-2 x)^{3/2} \sqrt {3+5 x}}{12 (2+3 x)^2}+\frac {605 \sqrt {1-2 x} \sqrt {3+5 x}}{8 (2+3 x)}-\frac {6655 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{8 \sqrt {7}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.22, size = 74, normalized size = 0.61 \begin {gather*} \frac {\sqrt {1-2 x} \sqrt {3+5 x} \left (7488+21638 x+15707 x^2\right )}{24 (2+3 x)^3}-\frac {6655 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{8 \sqrt {7}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(5/2)/((2 + 3*x)^4*Sqrt[3 + 5*x]),x]

[Out]

(Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(7488 + 21638*x + 15707*x^2))/(24*(2 + 3*x)^3) - (6655*ArcTan[Sqrt[1 - 2*x]/(Sqrt
[7]*Sqrt[3 + 5*x])])/(8*Sqrt[7])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(201\) vs. \(2(95)=190\).
time = 0.11, size = 202, normalized size = 1.66

method result size
risch \(-\frac {\sqrt {3+5 x}\, \left (-1+2 x \right ) \left (15707 x^{2}+21638 x +7488\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{24 \left (2+3 x \right )^{3} \sqrt {-\left (3+5 x \right ) \left (-1+2 x \right )}\, \sqrt {1-2 x}}+\frac {6655 \sqrt {7}\, \arctan \left (\frac {9 \left (\frac {20}{3}+\frac {37 x}{3}\right ) \sqrt {7}}{14 \sqrt {-90 \left (\frac {2}{3}+x \right )^{2}+67+111 x}}\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{112 \sqrt {1-2 x}\, \sqrt {3+5 x}}\) \(124\)
default \(\frac {\sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (539055 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{3}+1078110 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{2}+718740 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x +219898 x^{2} \sqrt {-10 x^{2}-x +3}+159720 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+302932 x \sqrt {-10 x^{2}-x +3}+104832 \sqrt {-10 x^{2}-x +3}\right )}{336 \sqrt {-10 x^{2}-x +3}\, \left (2+3 x \right )^{3}}\) \(202\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)/(2+3*x)^4/(3+5*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/336*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(539055*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^3+10781
10*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+718740*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)
/(-10*x^2-x+3)^(1/2))*x+219898*x^2*(-10*x^2-x+3)^(1/2)+159720*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x
+3)^(1/2))+302932*x*(-10*x^2-x+3)^(1/2)+104832*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)/(2+3*x)^3

________________________________________________________________________________________

Maxima [A]
time = 0.55, size = 107, normalized size = 0.88 \begin {gather*} \frac {6655}{112} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {49 \, \sqrt {-10 \, x^{2} - x + 3}}{27 \, {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} + \frac {1043 \, \sqrt {-10 \, x^{2} - x + 3}}{108 \, {\left (9 \, x^{2} + 12 \, x + 4\right )}} + \frac {15707 \, \sqrt {-10 \, x^{2} - x + 3}}{216 \, {\left (3 \, x + 2\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^4/(3+5*x)^(1/2),x, algorithm="maxima")

[Out]

6655/112*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 49/27*sqrt(-10*x^2 - x + 3)/(27*x^3 + 54*
x^2 + 36*x + 8) + 1043/108*sqrt(-10*x^2 - x + 3)/(9*x^2 + 12*x + 4) + 15707/216*sqrt(-10*x^2 - x + 3)/(3*x + 2
)

________________________________________________________________________________________

Fricas [A]
time = 1.06, size = 101, normalized size = 0.83 \begin {gather*} -\frac {19965 \, \sqrt {7} {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \, {\left (15707 \, x^{2} + 21638 \, x + 7488\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{336 \, {\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^4/(3+5*x)^(1/2),x, algorithm="fricas")

[Out]

-1/336*(19965*sqrt(7)*(27*x^3 + 54*x^2 + 36*x + 8)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1
)/(10*x^2 + x - 3)) - 14*(15707*x^2 + 21638*x + 7488)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(27*x^3 + 54*x^2 + 36*x +
8)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)/(2+3*x)**4/(3+5*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 310 vs. \(2 (95) = 190\).
time = 1.16, size = 310, normalized size = 2.54 \begin {gather*} \frac {1331}{224} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + \frac {1331 \, \sqrt {10} {\left (33 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{5} + 11200 \, {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{3} + \frac {1176000 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}{\sqrt {5 \, x + 3}} - \frac {4704000 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{12 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^4/(3+5*x)^(1/2),x, algorithm="giac")

[Out]

1331/224*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^
2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) + 1331/12*sqrt(10)*(33*((sqrt(2)*sqrt(-10*x + 5) - sqr
t(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^5 + 11200*((sqrt(2)*sqrt(-10*x +
5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^3 + 1176000*(sqrt(2)*sqrt
(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4704000*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)
*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^3

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (1-2\,x\right )}^{5/2}}{{\left (3\,x+2\right )}^4\,\sqrt {5\,x+3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - 2*x)^(5/2)/((3*x + 2)^4*(5*x + 3)^(1/2)),x)

[Out]

int((1 - 2*x)^(5/2)/((3*x + 2)^4*(5*x + 3)^(1/2)), x)

________________________________________________________________________________________